On Best Extensions of Hardy-hilbert’s Inequality with Two Parameters

نویسنده

  • BICHENG YANG
چکیده

This paper deals with some extensions of Hardy-Hilbert’s inequality with the best constant factors by introducing two parameters λ and α and using the Beta function. The equivalent form and some reversions are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hardy-hilbert Integral Inequalities with Some Parameters

In this paper, we give a new Hardy-Hilbert’s integral inequality with some parameters and a best constant factor. It includes an overwhelming majority of results of many papers.

متن کامل

On Some Extensions of Hardy-Hilbert’s Inequality and Applications

Laith Emil Azar Department of Mathematics, Al Al-Bayt University, P.O. Box. 130095, Mafraq 25113, Jordan Correspondence should be addressed to Laith Emil Azar, azar [email protected] Received 23 October 2007; Accepted 2 January 2008 Recommended by Shusen Ding By introducing some parameters we establish an extension of Hardy-Hilbert’s integral inequality and the corresponding inequality for series...

متن کامل

A Relation to Hardy-hilbert’s Integral Inequality and Mulholland’s Inequality

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and introducing a parameter λ. As applications, the reverse, the equivalent form and some particular results are considered.

متن کامل

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

On Hardy-hilbert’s Integral Inequality

In the present paper, by introducing some parameters, new forms of Hardy-Hilbert’s inequalities are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005